Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Environ Sci Pollut Res Int ; 30(24): 65848-65864, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2300263

RESUMEN

The present study evaluates the impact of the COVID-19 lockdown on the water quality of a tropical lake (East Kolkata Wetland or EKW, India) along with seasonal change using Landsat 8 and 9 images of the Google Earth Engine (GEE) cloud computing platform. The research focuses on detecting, monitoring, and predicting water quality in the EKW region using eight parameters-normalized suspended material index (NSMI), suspended particular matter (SPM), total phosphorus (TP), electrical conductivity (EC), chlorophyll-α, floating algae index (FAI), turbidity, Secchi disk depth (SDD), and two water quality indices such as Carlson tropic state index (CTSI) and entropy­weighted water quality index (EWQI). The results demonstrate that SPM, turbidity, EC, TP, and SDD improved while the FAI and chlorophyll-α increased during the lockdown period due to the stagnation of water as well as a reduction in industrial and anthropogenic pollution. Moreover, the prediction of EWQI using an artificial neural network indicates that the overall water quality will improve more if the lockdown period is sustained for another 3 years. The outcomes of the study will help the stakeholders develop effective regulations and strategies for the timely restoration of lake water quality.


Asunto(s)
COVID-19 , Calidad del Agua , Humanos , Lagos , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Clorofila/análisis , Redes Neurales de la Computación , Fósforo/análisis
2.
Environ Dev Sustain ; 23(9): 13778-13818, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1061562

RESUMEN

ABSTRACT: This study exclusively focuses on spatial and temporal change of temperature and precipitation before and after COVID-19 lockdown and also examines the extent of their variation and the spatial relationship between them. Our main objective is to analyze the spatiotemporal changes of two climatic variables in Indian subcontinent for the period of 2015-2020. Monthly precipitation and temperature data are collected from NOAA and NASA for January to May month across the four zones (northeast, northwest, central, and peninsular zone) of India. To conduct a zone-wise statistical analysis, we have adopted statistical process control (SPC) methods like exponentially weighted moving average (EWMA) control charts, individual charts (I- Chart) to detect the shift in temperature and precipitation over the study period and Pearson correlation coefficient applied to measure the spatial association between the two variables. The findings revealed that temperature parameter has experienced a lot of positive and negative trends in the span of 6 years and detected a weak to moderate negative correlation in many parts of the country in April 2020 after 2016. This study also identified a weak negative correlation mainly in NE zone in 2020 after 2017. This research provides vital scientific contribution to the effects of monthly temperature and precipitation before and after COVID-19 pandemic lockdown.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA